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Abstract

In this article, we consider monotone inclusions of three 
operators in real Hilbert spaces and suggest an inertial version 
of a generalized Douglas-Rachford splitting. Under standard 
assumptions, we prove its weak and strong convergence 
properties. The newly-developed proof techniques are based 
on the characteristic operator and thus are more self-contained 
and less convoluted. Rudimentary experiments demonstrated 
that our suggested inertial splitting method can efficiently solve 
some large-scale test problems.
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Abstract In this article, we consider monotone inclusions of three operators in real Hilbert s-

paces and suggest an inertial version of a generalized Douglas-Rachford splitting. Under standard

assumptions, we prove its weak and strong convergence properties. The newly-developed proof

techniques are based on the characteristic operator and thus are more self-contained and less con-

voluted. Rudimentary experiments demonstrated that our suggested inertial splitting method can

efficiently solve some large-scale test problems.
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1 Introduction

Very recently, there has been a renewed interest in adding inertial terms to various splitting methods

for monotone inclusions of two operators in real Hilbert spaces Dong et al. (2018), Thong et al.

(2018), Alves et al. (2020), Dong (2021a), Dong et al. (2021).

The idea of these inertial splitting methods can date back to a pioneering work Alvarez et al.

(2001), where the proximal point algorithm Martinet (1970), Rockafellar (1976) was well considered

by adding inertial terms.

In this article, we aim at adding inertial terms to splitting method used for solving the following

monotone inclusions of three operators in real Hilbert space H:

0 ∈ F (x) +B(x), with F := C +A, (1)

where the inverse of C : H → H is strongly monotone, A,B : H ⇒ H are maximal monotone.

Address(es) of author(s) should be given
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Specifically speaking, to solve (1), for k = 0, 1, ..., and the starting points z−1, z0 ∈ H, we

suggest the following inertial splitting method

ẑk = zk + tk(z
k − zk−1),

(J +A)(xk) � Jẑk,

(J +B)(yk) � 2Jxk − Jẑk − C(xk),

zk+1 = ẑk − γkM
−1J(xk − yk),

where tk > 0 is an inertial factor and J, M : H → H are linear, bounded and strongly monotone

and γk > 0. Henceforth, we call it iDR3 for short. For pertinent discussions, we refer to Hieu et al.

(2018), Iyiola et al. (2021), Dixit et al. (2021) and the references cited therein.

If C vanishes and

tk ≡ 0, J := α−1I, M := α−1I,

where α > 0, then it just reduces to the Douglas-Rachford splitting method of Lions and Mercier

Lions et al. (1979). See Eckstein et al. (1992), Dong et al. (2010) for related discussions

To guarantee weak convergence of iDR3, we assume that the inertial sequence {tk} satisfies

0 = t0 ≤ tk ≤ tk+1 ≤




t(θk, θk+1, ε), if θk ∈ (1, 2),

(1− ε)/3, if θk ≡ 2,
(2)

where ε is any given sufficiently small positive number and t(θk, θk+1, ε) is defined in (5) below.

Notice that the first condition in (2) follows the style of Dong (2021a) and the second in (2) mimic

those originally given in Alvarez et al. (2001).

The rest of this article is organized as follows. In Sect. 2, we give some useful concepts and pre-

liminary results. In Sect. 3, we formally describe iDR3. In Sect. 4, under standard assumptions, we

analyze weak and strong convergence of iDR3. For strong convergence, our proof technique follows

from Dong et al. (2010), and for weak convergence, our proof appears to be more self-contained

and less convoluted via introducing the characteristic operator. In Sect. 5, we compare iDR3 with

existing results. In Sect. 6, we discuss how to apply iDR3 to solving more general monotone inclu-

sion (40), in which the operator B in (1) has been linearly composed. See Algorithm 6.1 below for

more details. In Sect. 7, we did rudimentary numerical experiments to confirm practical usefulness

of iDR3. In Sect. 8, we close this article by some concluding remarks.

2 Preliminary Results

In this section, we first give some basic definitions and then provide some auxiliary results for later

use.

Let H be a real infinite-dimensional Hilbert space with usual inner product 〈x, y〉 and induced

norm ‖x‖ =
√
〈x, x〉 for x, y ∈ H. Let BL(H) be the set of all nonzero, bounded, linear operators

in H. If S ∈ BL(H) is further self-adjoint and strongly monotone, then we use ‖x‖S to stand for
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√
〈x, Sx〉 for all x ∈ H. I stands for the identity operator, i.e., Ix = x for all x ∈ H. domT stands

for the effective domain of T , i.e., domT := {x ∈ H : Tx �= ∅}. Throughout this article, for any

given J ∈ BL(H), one may split it into

J = J+ + J−, with J+ := 0.5(J + J∗), J− := 0.5(J − J∗), (3)

where J∗ stands for the adjoint operator of J . notice that such adjoint operator must exist uniquely.

For any given J, J ′ ∈ BL(H), we use the notation J � J ′(J � J ′) to stand for that J − J ′ is

monotone (strongly monotone). This is the corresponding Löwner partial ordering between two

bounded and linear operators.

Definition 1 Let T : H → H be a single-valued operator. If there exists some constant number

κ > 0 such that

‖T (x)− T (y)‖ ≤ κ‖x− y‖, ∀x, y ∈ H,

then T is called Lipschitz continuous.

To concisely give the following definition, we agree on that the notation (x,w) ∈ T and x ∈ H,

w ∈ T (x) have the same meaning. Moreover, w ∈ Tx if and only if x ∈ T−1w, where T−1 stands

for the inverse of T .

Definition 2 Let C ⊆ H be a nonempty subset. An operator T : C → C is called non-expansive

if and only if

‖T (x)− T (y)‖ ≤ ‖x− y‖, ∀x, y ∈ C;

firmly non-expansive if and only if

‖T (x)− T (y)‖2 ≤ 〈x− y, T (x)− T (y)〉, ∀x, y ∈ C.

Definition 3 Let A : H ⇒ H be an operator. It is called monotone if and only if

〈x− x′, w − w′〉 ≥ 0, ∀(x,w) ∈ A, ∀(x′, w′) ∈ A;

maximal monotone if and only if it is monotone and for given x̂ ∈ H and ŵ ∈ H the following

implication relation holds

〈x− x̂, w − ŵ〉 ≥ 0, ∀(x,w) ∈ A ⇒ ∀(x̂, ŵ) ∈ A.

Definition 4 Let T : H ⇒ H be an operator, T is called uniformly monotone if there exists an

increasing function φT : [0,+∞) → [0,+∞) that φT (t) = 0 if and only if t = 0, and

〈x− x′, w − w′〉 ≥ φT (‖x− x′‖), ∀(x,w) ∈ T, ∀(x′, w′) ∈ T.

In the case of φT (t) = µT t
2 with µT > 0, T is called µT -strongly monotone.
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Definition 5 Let C : H → H be an operator. C−1 is called c-strongly monotone if there exists

some c > 0 such that

〈x− y, C(x)− C(y)〉 ≥ c‖C(x)− C(y)‖2, ∀x, y ∈ H.

In particular, if C(x) = Mx + q, where M is an n × n positive semi-definite matrix and q is an

n-dimensional vector, then

〈x,Mx〉 ≥ λ−1
max‖Mx‖2, ∀x ∈ Rn,

where λmax is the largest eigenvalue of M .

Definition 6 Let f : H → (−∞,+∞] be a closed, proper and convex function. Then for any

given x ∈ H the sub-differential of f at x is defined by

∂f(x) := {s ∈ H : f(y)− f(x) ≥ 〈s, y − x〉, ∀y ∈ H}.

Each s is called a sub-gradient of f at x. Moreover, if f is further continuously differentiable,

then ∂f(x) = {∇f(x)}, where ∇f(x) is the gradient of f at x.

It is well known that the sub-differential of any closed proper convex function in an infinite-

dimensional Hilbert space is maximal monotone as well.

For any given maximal monotone operator A : H ⇒ H, it is Minty (1962) who proved that

there must exist a unique y ∈ H such that (I + λA)y � x for all x ∈ H and λ > 0, where I stands

for the identity operator, i.e., Ix = x for all x ∈ H. This implies that the corresponding operator

JλA := (I+λA)−1, also called the resolvent of A, is single-valued. Consider the following indicator

function

δC(x) =




0, if x ∈ C,

+∞, if x /∈ C.
where C is some nonempty closed convex set in Rn. Then, its sub-differential must be closed, proper

convex. Furthermore, for any given positive number λ > 0, we have PC = (I + λ∂δC)
−1, where PC

is usual projection onto C.

Lemma 2.1 Let A,B,C be operators defined in the problem (1). Then the resulting character-

istic operator via Attouch-Thera duality principle

T (x, u, v) :=




A

B−1

C−1







x

u

v


+




0 I I

−I 0 0

−I 0 0







x

u

v


 (4)

must be maximal monotone.

Proof Note that C, A and B are maximal monotone. Thus, the first operator on the right-hand

side must be maximal monotone and the second must be maximal monotone as well. Maximality

of T follows from Rockafellar (1970).

Lemma 2.2 Consider any maximal monotone operator T : H → H. Assume that the sequence

{wk} in H converges weakly to w, and the sequence {sk} on domT converges strongly to s. If

T (wk) � sk for all k, then the relation T (w) � s must hold.
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3 Method

In this section, we formally state iDR3.

Now we set

t(θk, θk+1, ε) :=
√
p2k + qk − pk, (5)

where

pk :=
1

2

θk + θk+1 − 1

2− θk+1
, qk :=

θk − 1− ε

2− θk+1
,

and ε is any given sufficiently small positive number. For the inertial sequence {tk}, we choose it

via t0 = 0 and

tk ≤ tk+1 ≤




t(θk, θk+1, ε), if θk ∈ (1, 2),

(1− ε)/3, if θk ≡ 2.
(6)

Next, we formally state

Algorithm 3.1

Step 0. Choose J,M ∈ BL(H). Choose z0, z−1 ∈ H. Choose θ0 = θ−1 = 2/1.9, t0 = t−1 = 0. Compute c and

D0 := J −
1

4c
I. (7)

Set k := 0.

Step 1. Compute

ẑk = zk + tk(z
k − zk−1), (8)

(J +A)(xk) � Jẑk, (9)

(J +B)(yk) � 2Jxk − Jẑk − C(xk). (10)

If some stopping criterion is met, then stop. Otherwise, go to Step 2.

Step 2 Compute

γk = 2θ−1
k ‖xk − yk‖2D0

/‖J(xk − yk)‖2
M−1 , (11)

zk+1 = ẑk − γkM
−1J(xk − yk). (12)

Choose θk+1 ∈ (1, 2] and tk+1 by (6). Set k := k + 1, and go to Step 1.

Notice that, in practical implementations, it seems convenient to directly use the following

Table 1 for upper bounds of the inertial sequence.

Table 1: Numerical demonstration of the conditions (6) with ε = 0.0001

2/θk 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

t 0.333 0.303 0.274 0.245 0.216 0.186 0.154 0.121 0.085 0.045

From this table, we can see that, in the case of θk being some constant, t(θk, θk+1, ε) < 1/3

holds for several special values of θk. In fact, it is direct to show that

p2k + qk < (pk + 1/3)2 ⇒
√
p2k + qk < pk + 1/3.
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Thus, we have

t(θk, θk+1, ε) =
√
p2k + qk − pk < 1/3.

In Algorithm 3.1, if we set

J := α−1I, M := α−1I, (13)

then we shall choose α ∈ (0, 4c) so that D0 in (7) is positive definite. Meanwhile, the formula of

calculating γk reduces to

γk = 2(1− α/4c)θ−1
k , 1 < θk ≤ 2. (14)

In this case, the corresponding algorithm coincides with a modified version Davis (2015) of the

Douglas-Rachford splitting method of Lions and Mercier.

In Algorithm 3.1, if J := α−1I and B is taken to be the differential of some nonempty closed

convex subset, then (10) reduces to

(I + αB)(yk) � 2xk − ẑk − αC(xk).

Thus, yk is usual projection of 2xk − ẑk − αC(xk) onto this subset.

4 Convergence properties

In this section, we analyze convergence behaviours of Algorithm 3.1. Under standard assumptions,

we prove its weak convergence.

This section begins with the celebrated lemma due to Alvarez et al. (2001), which is used for

simplifying the proof of our main theorem in this article.

Lemma 4.1 Let {ϕk}, {tk} and {δk} be nonnegative sequences. Assume that

ϕk+1 ≤ ϕk + tk(ϕk − ϕk−1) + δk, k = 0, 1, ...,

where 0 ≤ tk ≤ t < 1 and
∑+∞

k=0 δk < +∞. Then, limk→+∞ ϕk exists.

Also, we need to make use of the following well-known results.

Lemma 4.2 If M ∈ BL(H) is self-adjoint and strongly monotone. Then the following

‖(1 + t)u− tv‖2M = (1 + t)‖u‖2M − t‖v‖2M + t(1 + t)‖u− v‖2M , (15)

2〈u, v〉 ≤ ‖u‖2M + ‖v‖2M−1 , (16)

hold for all u, v ∈ H and t ∈ R.

To analyze convergence behaviours of Algorithm 3.1, we make

Assumption 4.1. Assume that

(i) The operator C is c-inverse strongly monotone.

(ii) The backward operator B : H ⇒ H is maximal monotone.

(iii) A,B is uniformly monotone.
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(iv) J ∈ BL(H) is self-adjoint and strongly monotone.

(v) M ∈ BL(H) is self-adjoint and strongly monotone.

For Algorithm 3.1, the corresponding (9) reads

A(xk) � J(ẑk − xk) ⇔ ak = J(ẑk − xk), where ak ∈ A(xk). (17)

Clearly, if x∗ is an element of the solution set (if nonempty) of the problem (1), then there must

be ẑ∗ such that

A(x∗) � J(ẑ∗ − x∗) ⇔ a∗ = J(ẑ∗ − x∗), where a∗ ∈ A(x∗). (18)

Based on these observations, we introduce the following lemma.

Lemma 4.3 If Assumption 4.1 holds, then

〈Jẑk − Jẑ∗, xk − yk〉 ≥ ‖xk − yk‖2D0
+ φA(‖xk − x∗‖) + φB(‖yk − x∗‖).

Proof It follows from (9) and (10) that

B(yk) � J(xk − yk)− C(xk)− ak, where ak ∈ A(xk), (19)

which, together with B(x∗) � −C(x∗)− a∗, a∗ ∈ A(x∗) and uniform monotonicity of B, implies

φB(‖yk − x∗‖) ≤ 〈yk − x∗, J(xk − yk)− (C(xk)− C(x∗))− (ak − a∗)〉

= 〈yk − x∗, J(xk − yk)− (ak − a∗)〉 − 〈yk − x∗, C(xk)− C(x∗)〉.

Combining this with that C ′s c-inverse strong monotonicity yields

〈yk − x∗, J(xk − yk)− (ak − a∗)〉

≥ 〈yk − x∗, C(xk)− C(x∗)〉+ φB(‖yk − x∗‖)

= 〈xk − x∗, C(xk)− C(x∗)〉 − 〈xk − yk, C(xk)− C(x∗)〉+ φB(‖yk − x∗‖)

≥ c‖C(xk)− C(x∗)‖2 − 1

2

(
1

2c
‖xk − yk‖2 + 2c‖C(xk)− C(x∗)‖2

)
+ φB(‖yk − x∗‖)

≥ − 1

4c
‖xk − yk‖2 + φB(‖yk − x∗‖).

Since J is self-adjoint, we further get

− 1

4c
‖xk − yk‖2 + φB(‖yk − x∗‖)

≤ 〈xk − x∗ − (xk − yk), J(xk − yk)− (ak − a∗)〉

= 〈xk − x∗, J(xk − yk)〉+ 〈xk − yk, ak − a∗〉 − 〈xk − yk, J(xk − yk)〉 − 〈xk − x∗, ak − a∗〉

= 〈Jxk + ak − (Jx∗ + a∗), xk − yk〉 − 〈xk − yk, J(xk − yk)〉 − 〈xk − x∗, ak − a∗〉,
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which, together with uniform monotonicity of A, indicates

〈Jxk + ak − (Jx∗ + a∗), xk − yk〉

≥ 〈xk − yk, J(xk − yk)〉 + 〈xk − x∗, ak − a∗〉 − 1

4c
‖xk − yk‖2 + φB(‖yk − x∗‖)

≥ 〈xk − yk, J(xk − yk)〉 − 1

4c
‖xk − yk‖2 + φA(‖xk − x∗‖) + φB(‖yk − x∗‖)

= 〈xk − yk, (J − 1

4c
I)(xk − yk)〉 + φA(‖xk − x∗‖) + φB(‖yk − x∗‖)

= ‖xk − yk‖2D0
+ φA(‖xk − x∗‖) + φB(‖yk − x∗‖).

Thus, by (17) and (18), we have

〈Jẑk − Jẑ∗, xk − yk〉 = 〈Jxk + ak − (Jx∗ + a∗), xk − yk〉

≥ ‖xk − yk‖2D0
+ φA(‖xk − x∗‖) + φB(‖yk − x∗‖).

Then, the proof is complete.

Theorem 4.1 If Assumption 4.1 holds and there exists some ρ > 0 such that

D0 := J − 1

4c
I � ρI. (20)

Then, (i) the sequence {xk} generated by Algorithm 3.1 must converge weakly to an element of

the solution set (if nonempty) of the monotone inclusion (1); (ii) if either A or B is uniformly

monotone, then this sequence is strongly convergent.

Proof (i) Let x∗ be a solution of the monotone inclusion (1) above. It follows from Lemma 4.3,

(11) and (12) that

‖zk+1 − ẑ∗‖2M

= ‖ẑk − ẑ∗ − γkM
−1J(xk − yk)‖2M

= ‖ẑk − ẑ∗‖2M − 2γk〈Jẑk − Jẑ∗, xk − yk〉+ γ2
k‖J(xk − yk)‖2M−1

≤ ‖ẑk − ẑ∗‖2M − 2γk‖xk − yk‖2D0
+ γ2

k‖J(xk − yk)‖2M−1

− 2γk(φA(‖xk − x∗‖) + φB(‖yk − x∗‖))

≤ ‖ẑk − ẑ∗‖2M − 2γk‖xk − yk‖2D0
+ γ2

k‖J(xk − yk)‖2M−1

= ‖ẑk − ẑ∗‖2M − 2(1− θ−1
k )γk‖xk − yk‖2D0

, (21)

which, together with (15), implies

‖ẑk − ẑ∗‖2M = ‖(1 + tk)(z
k − ẑ∗)− tk(z

k−1 − ẑ∗)‖2M

= (1 + tk)‖zk − ẑ∗‖2M − tk‖zk−1 − ẑ∗‖2M + tk(1 + tk)‖zk − zk−1‖2M . (22)

By (11) and (12), we get

γk‖xk − yk‖2D0
=

1

2
θkγk

2‖J(xk − yk)‖2M−1 =
1

2
θk‖γkM−1J(xk − yk)‖2M . (23)
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Meanwhile, it follows from (12) that

‖γkM−1J(xk − yk)‖2M

= ‖zk+1 − ẑk‖2M

= ‖zk+1 − zk − tk(z
k − zk−1)‖2M

= ‖zk+1 − zk‖2M − 2tk〈zk+1 − zk,M(zk − zk−1)〉+ t2k‖zk − zk−1‖2M

≥ ‖zk+1 − zk‖2M − tk
(
‖zk+1 − zk‖2M + ‖M(zk − zk−1)‖2M−1

)
+ t2k‖zk − zk−1‖2M

= (1− tk)‖zk+1 − zk‖2M − (tk − t2k)‖zk − zk−1‖2M , (24)

where the last inequality comes from (16).

Thus, in terms of (21), (22), (23) and (24), we have

‖zk+1 − ẑ∗‖2M

≤ (1 + tk)‖zk − ẑ∗‖2M − tk‖zk−1 − ẑ∗‖2M − (θk − 1)(1− tk)‖zk+1 − zk‖2M

+
(
θktk + (2− θk)t

2
k

)
‖zk − zk−1‖2M . (25)

Set

ϕk := ‖zk − ẑ∗‖2M , λk := θktk + (2− θk)t
2
k,

ψk := ϕk − tk−1ϕk−1 + λk‖zk − zk−1‖2M .

It follows from (25) and 0 ≤ tk ≤ tk+1 ≤ t < 1, we have

ϕk+1 ≤ (1 + tk)ϕk − tk−1ϕk−1 − (θk − 1)(1− tk)‖zk+1 − zk‖2M + λk‖zk − zk−1‖2M .

Thus, we further have

ψk+1 ≤ ψk − ((θk − 1)(1− tk)− λk+1) ‖zk+1 − zk‖2M .

Next, we consider

(θk − 1)(1− tk)− λk+1

= θk − 1− (θk − 1)tk − θk+1tk+1 − (2− θk+1)t
2
k+1

≥ θk − 1− (θk − 1)tk+1 − θk+1tk+1 − (2− θk+1)t
2
k+1

= θk − 1− (θk + θk+1 − 1)tk+1 − (2− θk+1)t
2
k+1.

To guarantee

θk − 1− (θk + θk+1 − 1)tk+1 − (2− θk+1)t
2
k+1 ≥ ε,

we consider two cases. If θk ≡ 2, then

tk+1 ≤ θk − 1− ε

θk + θk+1 − 1
⇒ tk ≤ 1− ε

3
. (26)

If θk ∈ (1, 2), then

tk+1 ≤ t(θk, θk+1, ε), (27)
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where t(θk, θk+1, ε) is given by (5). Thus, in each case, we always have tk ≤ t < 1/3. Therefore, we

get

ψk+1 ≤ ψk − ε‖zk+1 − zk‖2M , (28)

which, together with nonincreasing property of {ψk}, implies

ψ0 ≥ ψk = ϕk − tk−1ϕk−1 + λk‖zk − zk−1‖2M ≥ ϕk − tk−1ϕk−1

≥ ϕk − tϕk−1 ≥ −tϕk−1. (29)

It follows from ψ0 ≥ ϕk − tϕk−1 that

ϕk ≤ ψ0

∑k−1
i=0 t

i + tkϕ0 ≤ ψ0

1− t
+ tkϕ0,

where we notice that ψ0 = ϕ0 (due to the relation t0 = t−1 = 0).

Combining (28) with (29) yields

ε
∑k

i=0 ‖z
i+1 − zi‖2M ≤ ψ0 − ψk+1 ≤ ψ0 + tϕk ≤ ψ0

1− t
+ tk+1ϕ0 ≤ ψ0

1− t
+ ϕ0.

Thus, we know

∑+∞
k=0 ‖z

i+1 − zi‖2M < ∞ ⇒ lim
k→∞

‖zk+1 − zk‖2M = 0. (30)

From Assumption 4.1 (v), we further have

lim
k→∞

‖zk+1 − zk‖ = 0. (31)

It can be easily seen from (25) that

ϕk+1 ≤ ϕk + tk(ϕk − ϕk−1) + δk,

where

δk := (θktk + (2− θk)t
2
k)‖zk − zk−1‖2M ≤ 2‖zk − zk−1‖2M .

From (30) and 1 < θk ≤ 2, we know
∑+∞

k=0 δk < +∞. This fact, together with Lemma 4.1, indicates

that the sequence {‖zk − ẑ∗‖2M} converges. Thus, the sequence {zk} is bound in norm, so does

{ẑk} due to (8) and (31).

From (11) and (20) , it is not difficult to check that

γk ≥ 2ρ

θk‖J‖2 · ‖M−1‖
> 0 ⇒ γmin = lim

k→∞
inf γk > 0.

Thus, it follows from (23) that

2θ−1
k γmin‖xk − yk‖2D0

≤ 2θ−1
k γk‖xk − yk‖2D0

= ‖γkM−1J(xk − yk)‖2M

= ‖zk+1 − ẑk‖2M

= ‖zk+1 − zk − tk(z
k − zk−1)‖2M ,
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which, together with (31), implies

lim
k→∞

‖xk − yk‖ = 0. (32)

On the other hand, it follows from (4) that

T (xk, J(xk − yk)− vk − ak, vk) =




A(xk) + J(xk − yk)− vk − ak + vk

−xk +B−1(J(xk − yk)− vk − ak)

−xk + C−1(vk)


 ,

which, together with ak ∈ A(xk) , vk = C(xk) and B−1(J(xk − yk)− vk − ak) � yk, implies

T (xk, J(xk − yk)− vk − ak, vk) �




Jxk − Jyk

−xk + yk

0


 . (33)

Next, let us prove that {xk}, {ak} and {vk} are bounded in norm. In fact, in terms of (17),

(18), self-adjoint property and strong monotonicity of J , we have

‖Jẑk − Jẑ∗‖2J−1 = ‖J(xk − x∗) + ak − a∗‖2J−1

= ‖xk − x∗‖2J + 2〈xk − x∗, ak − a∗〉+ ‖ak − a∗‖2J−1

≥ ‖xk − x∗‖2J .

A similar discussion yields

‖Jẑk − Jẑ∗‖2J−1 ≥ ‖ak − a∗‖2J−1 .

These two inequalities tell us that, since {ẑk} is bounded in norm, so do {xk} and {ak}. As to {vk},

it is certainly bounded in norm due to vk = C(xk) and C ′ Lipschitz continuity. So, {(xk, ak, vk)} is

bounded in norm and thus has at least one weak cluster point, say {(x∞, a∞, v∞)}. Consequently,

there exists some subsequence of {(xk, ak, vk)} such that

(xkj , akj , vkj ) ⇀ (x∞, a∞, v∞), as kj → +∞,

where the notation ” ⇀ ” stands for weak convergence.

Now let us have a look at (33) once again. For the terms on the left-hand side, it is easy to

check that

xk ⇀ x∞, J(xk − yk)− vk − ak ⇀ −v∞ − a∞, vk ⇀ v∞.

For the terms on the right-hand side, it follows from (32) and boundedness and linearity of J that

Jxk − Jyk tends to zero in norm. So, it follows from Lemma 2.2 that (x∞,−v∞ − a∞, v∞) must

be zero of T . Thus, in view of (4), we can get

0 ∈ v∞ +A(x∞)− v∞ − a∞ ⇒ a∞ ∈ A(x∞),

0 ∈ −x∞ +B−1(−v∞ − a∞) ⇒ −v∞ − a∞ ∈ B(x∞),

0 = −x∞ + C−1(v∞) ⇒ v∞ = C(x∞).
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These relations on the right-hand side indicate that

0 ∈ C(x∞) +A(x∞) +B(x∞).

As to a proof of the uniqueness of weak cluster point, it is standard Dong et al. (2010) and thus is

omitted.

(ii) By Lemma 4.3 and the well-known Cauchy-Schwarz inequality, we have

φA(‖xk − x∗‖) + φB(‖yk − x∗‖) ≤ 〈Jẑk − Jẑ∗, xk − yk〉 ≤ ‖Jẑk − Jẑ∗‖‖xk − yk‖.

So, the desired results follow from (32), boundedness of {ẑk} and boundedness and linearity of J .

Notice that our proof techniques of weak convergence are more self-contained and less convo-

luted via introducing the characteristic operator, and the idea can be found in Eckstein (2017) and

in an early version, accepted by Optimization Online in December 2018, of a very recent article

Dong (2021).

At the end of this section, we would like to point out that we are able to follow [1] to replace

(6) with

0 ≤ tk ≤ t < 1,
∑+∞

k=0 tk‖zk − zk−1‖2 < +∞. (34)

If α ∈ (0, 4c) and γk is given by (14), then the resulting algorithm remains weakly convergent

Zhu (2020). Yet, one may argue that the assumptions shall be made on problem itself instead of

iterates. Therefore, we will not discuss them any more.

5 Comparisons with existing results

In this section, we mainly compare Algorithm 3.1 with existing results Yu (2019).

The involved method Yu (2019) there is an inertial version of Algorithm 3.1 of Dong et al.

(2019) there for solving the monotone inclusion of three operators (1), in which A := L is further

bounded and linear, and it can be stated as follows.

By comparing the description of Algorithm 5.1 with that of Algorithm 3.1, we find out that

they allow for the same assumptions on inertial factors (6).

6 An application

In this section, we are mainly concerned with the following problem of finding an x in H such that

0 ∈ C(x) +A(x) +Q∗B(Qx− q), (40)

where the operator A : H ⇒ H and the operator B : G ⇒ G are maximal monotone, and Q : H → G

is nonzero bounded linear with its adjoint Q∗, and q ∈ G.
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Algorithm 5.1

Step 0. Choose J, S ∈ BL(H). Choose z0, z−1 ∈ H. Choose θ0 = θ−1 = 2/1.9, t0 = t−1 = 0. Compute c and

D := J+ − L+ −
1

4c
I. (35)

Set k := 0.

Step 1. Compute

x̂k = xk + tk(x
k − xk−1), (36)

(J +B)(yk) � (J − F )(xk). (37)

If some stopping criterion is met, then stop. Otherwise, go to Step 2.

Step 2 Compute

γk = 2θ−1
k ‖x̂k − yk‖2D/‖(J − L)(x̂k − yk)‖2

S−1 , (38)

xk+1 = x̂k − γkS
−1(J − L)(x̂k − yk). (39)

Choose θk+1 ∈ (1, 2] and tk+1 by (6). Set k := k + 1, and go to Step 1.

Let

T (x, u) :=


C 0

0 0





x

u


+


A 0

0 B−1





x

u


+


 0 Q∗

−Q 0





x

u


+


0

q


 . (41)

Then (40) can be reformulated into

0 ∈ T (x, u). (42)

Below we demonstrate how to apply Algorithm 3.1 to solving the monotone inclusion (41)-(42)

above.

If the three operators in (41) correspond to C, A, B in (1), respectively, then Algorithm 3.1

becomes

Notice that, in the light of the following Moreau identity

(βI +B−1)−1 ≡ 1

β
I − 1

β
(I + βB)−1,

the process of (43) can be divided into

ûk := βẑk2 , ũk := (I + βB)−1(ûk), uk := (ûk − ũk)/β. (48)

As to (44), we may solve this system of linear equations via

(βα−1I +Q∗Q)(yk)

= 2βα−1xk − βC(xk)− 2βQ∗uk − βα−1ẑk1 + βQ∗ẑk2 +Q∗q, (49)

vk = 2uk − ẑk2 + β−1Qyk − β−1q. (50)

Here we would like to make some remarks. When C vanishes, so do the C, c in Algorithm 6.1.

The resulting algorithm seems new.
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Algorithm 6.1

Step 0. Choose M ∈ BL(H). Choose z01 , z
−1
1 ∈ H, z02 , z

−1
2 ∈ G. Choose θ0 = θ−1, t0 = t−1 = 0. Compute c .

Choose α ∈ (0, 4c) . Choose β > 1/4c. Set k := 0.

Step 1. Let zk = (zk1 , z
k
2 ).

ẑk = zk + tk(z
k − zk−1)

(I + αA)(xk) � ẑk1

(βI +B−1)(uk) � βẑk2 . (43)

Find yk, vk satisfying 


α−1yk +Q∗vk = 2α−1xk − α−1ẑk1 − C(xk),

βvk −Qyk + q = 2βuk − βẑk2 .
(44)

If some stopping criterion is met, then stop. Otherwise, go to Step 2.

Step 2 Compute

wk
1 := α−1(xk − yk), wk

2 := β(uk − vk), wk :=


wk

1

wk
2


 (45)

γk = 2θ−1
k

(α−1 − 1
4c

)‖xk − yk‖2 + (β − 1
4c

)‖uk − vk‖2

‖wk‖2M−1

(46)

zk+1 = ẑk − γkM
−1wk. (47)

Choose θk+1 ∈ (1, 2] and tk+1 by (6). Set k := k + 1, and go to Step 1.

7 Rudimentary experiments

In this section, using three different classes of test problems, we compared the empirical perfor-

mance of Algorithm 3.1 and its variations, all implemented in MATLAB.

For Algorithm 3.1, we chose the associated parameters as follows.

DR3: θk ≡ 2/1.9, α = 1.5/6 (tk ≡ 0).

iDR3(1): θk ≡ 2/1, α = 1.5/6, tk ≡ 0.333.

iDR3(1.9): θk ≡ 2/1.9, α = 1.5/6, tk ≡ 0.045.

iDR3plus: θk ≡ 2/1.9, α = 1.5/6. For tk, we chose t0 = 0.333 and

tk+1 =




max{tk, 0.045}, if ‖zk+1 − zk‖/‖zk − zk−1‖ ≤ 0.9,

max {tk/(1 + kτ ), 0.045} , otherwise,
(51)

where τ ∈ {0.5, 1, 1.5}.

Our first test problem is to solve the following linear monotone complementarity problem Dong

et al. (2019)

0 ∈ F (x) + ∂δΩ(x), with F := C +A,

where δΩ is the indicator function of the first orthant Ω = {x : xi ≥ 0, i = 1, ..., n} and C(x) :=

(1− s)Ux+ q, where s ∈ [0, 1), and the associated matrices are n× n block tridiagonal.

U = tridiag (−I, Q̄, −I), A = sU +
hc̄

2
tridiag (−I, O, I)
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Table 2: Numerical results on the first problem: k (left) and the elapsed time

n, ε DR3 iDR3(1) iDR3(1.9) iDR3plus

502, 10−9 147 : 1.206 181 : 1.472 139 : 1.145 105 : 0.951

1002, 10−8 534 : 18.60 675 : 23.06 509 : 17.51 342 : 11.94

1502, 10−7 1120 : 96.03 1418 : 120.2 1069 : 90.68 735 : 67.04

2002, 10−6 1857 : 289.5 2352 : 339.1 1773 : 257.0 1228 : 178.2

and n = m2, where h = 1/(m + 1), c̄ = 100, I is an m × m identity matrix and Q̄ is an m × m

matrix of the form 4I + Q + QT with Qij = −1 whenever j = i + 1, i = 1, ...,m − 1, otherwise

Qij = 0. To know the solution of this problem in advance. We set q = −((1 − s)U + A)e1, where

e1 is the first column of the corresponding identity matrix. Thus, x∗ = e1 is the unique solution of

the complementarity problem. Obviously, the problem corresponds to the monotone inclusion (1)

with

F (x) = C(x) +A(x), B(x) = ∂δΩ(x).

Notice that the largest eigenvalue of U is less than 6. Thus, in practical implementations, we

adopted

c = 1/(6(1− s)), J := α−1I, θk ∈ (1, 2], M := α−1I.

Set s = 0.5. The starting points were chosen as

x0 = ones(n, 1), z−1 = ones(n, 1), z0 = ones(n, 1).

We made use of the following stopping criterion

‖xk − x∗‖ ≤ ε‖x0 − x∗‖.

We chose the parameter τ = 0.5 in (51).

The corresponding numerical results were reported in Table 2.

Our second test problem is taken from Dong (2021b) and it is to find an x ∈ Rm such that

0 ∈ Dx− d+Q∗∂δC(Qx− q),

where

D = tridiag (a, b, −1), a := −1− h, b := 4 + 2h, h := 1/(m+ 1),

and q = (0, ..., 0,−1/m)T ∈ Rm+1 and

Q =


 I

rT


 , rT := (− 1

m
, ...,− 1

m
),

and C ⊆ Rm+1 is the first orthant. To ensure that e1 = (1, 0, ..., 0)T solves it, we set d = De1 in

our practical implementations. Furthermore, we chose

Cx = 0.5(D +DT )x− d, Ax = 0.5(D −DT )x
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Table 3: Numerical results on the third problem: k (left) and the elapsed time

m Algo6.1(non) Algo6.1(1) Algo6.1(1.9) Algo6.1plus

1000 147 : 1.206 181 : 1.472 139 : 1.145 105 : 0.951

5000 1857 : 289.5 2352 : 339.1 1773 : 257.0 1228 : 178.2

to match the problem (41)-(42).

For Algorithm 6.1, we set

z0 = z−1 = 0, θ = 2/1.9, c = 1/6, α = 0.25, β = 4.

We adopted the stopping criterion ‖xk − x∗‖ ≤ ε‖x0 − x∗‖, where ε = 10−6.

Notice that, for our third test problem, Q satisfies QTQ = I+rrT . Thus, the coefficient matrix

in (49) becomes

βα−1I +QTQ = (βα−1 + 1)I + rrT .

Therefore, it follows from Sherman-Morrison formula that

(
(βα−1 + 1)I + rrT

)−1
=

1

βα−1 + 1

(
I − rrT

βα−1 + 1 + rT r

)
.

In addition, (48) becomes

uk = ẑk2 −max{0, ẑk2}.

The corresponding numerical results were reported in Table 3.

From Tables 2-3, we can see that each plus-version of both Algorithm 3.1 and Algorithm 6.1

is always the best, with less elapsed time and fewer number of iteration for the corresponding test

problem.

8 Conclusions

In this article, we have considered monotone inclusions of three operators in real Hilbert spaces and

have suggested an inertial splitting method: iDR3. Under standard assumptions, we have analyzed

its weak and strong convergence properties. The newly-developed proof techniques are based on

the characteristic operator and thus are more self-contained and less convoluted.

By writing this article, we try to break the ice from aspect of computational efficiency since we

have designed a practically useful iDR3plus to significantly increase efficiency of iDR3. This is in

a sharp contrast to at most somewhat better but possibly worse impression on inertial effects. We

cherish the hope that our new findings can arouse the attention from optimization community so

as to emerge more and deeper research achievements.
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